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Abstract. It was recently shown that left–right symmetric models for elementary particles can be built
with only two Higgs doublets. The general consequence of these models is that the left and right fermionic
sectors can be connected by a new neutral gauge boson Z′ having its mass as the only additional new
parameter. In this paper we study the influence of the fundamental fermionic representation for this new
neutral gauge boson. Signals of possible new heavy neutral gauge bosons are investigated for the future
electron–positron colliders at

√
s = 500 GeV, 1 TeV and 3 TeV. The total cross sections, forward–backward

and left–right asymmetries and model differences are calculated for the process e+e− −→ µ+µ−. Bounds
on Z′ masses are estimated.

1 Introduction

One possible way to understand the left–right asymmetry
of elementary particles is to enlarge the standard model
into a left–right symmetric structure and then, by some
spontaneously brokenmechanism, to recover the low energy
asymmetric world. There are three main points in this
proposal: the choice of the gauge group, the Higgs sector
and the fundamental fermionic representation.

Left–right models starting from the gauge group
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L were developed by many
authors [1] and are well known to be consistent with the
standard SU(2)L⊗U(1)Y model. This group can be part of
more general models, like some grand unified groups [2], su-
perstring inspired models [3], a connection between parity
and the strong CP problem [4], left–right extended stan-
dard models [5]. All these approaches imply the existence
of some new intermediate physical mass scale, well bellow
the unification or the Planck mass scale.

For the Higgs sector there are some options. Two Higgs
doublets that transform as fields in the left and right sec-
tors can be supposed to be spontaneously broken at scales
vL = vFermi and at a larger scale vR respectively. The
earlier left–right symmetric models added a new Higgs in
the mixed representation (1/2, 1/2, 0), for (T3L, T3R, Y ).
The symmetry breaking of this field gives a mixing in the
charged vector boson sector (not yet experimentally ver-
ified) and could also be responsible for neutrino masses.
The increasing experimental evidence on neutrino oscilla-
tions and nonzero masses has motivated a renewed inter-
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est in the mechanisms for parity breaking. More recently
it was shown that all fermion masses could be obtained
with only two Higgs doublets [6]. The basic mechanism for
this model is the dimension-5 operator built by Weinberg
years ago [7]. It is also possible to build mirror models with
two Higgs doublets and new Higgs singlets [8]. In this case
charged fermion masses can be understood as a result of
a see-saw mechanism.

Throughout this paper we call models with two Higgs
doublets “minimal models” in the sense that they have the
minimal set of new scale parameters that are shown to be
consistent with the standard SU(2)L ⊗ U(1)Y theory.

For the fermion spectrum there is no unique choice
of the fundamental fermionic representation. Earlier left–
right models restored parity by choosing the right-handed
sector as doublets under SU(2)R with νR and uR as the
upper components of the right doublet. Other models have
doubled the number of fundamental fermions choosing the
new sector with opposite chirality relative to the standard
model sector.

In this paper we present models that start from the sim-
ple gauge structure of SU(2)L ⊗ SU(2)R ⊗ U(1)B−L and
investigate the consequences of the minimal Higgs sector
that breaks the left–right symmetry. This paper is orga-
nized as follows: in Sect. 2 we review the main assumptions
for the Higgs and gauge sector in the minimal left–right
model; in Sect. 3 we review the properties of new fermion
representation; in Sect. 4 we show some phenomenological
consequences for testing the models here proposed and in
Sect. 5 we give our conclusions.
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2 The Higgs and gauge boson sectors
in the minimal model

Left–right models with only two Higgs doublets have been
previously considered [6, 8]. We review in this section the
main points that are relevant for the new neutral current
interactions. The minimal left–right symmetric model con-
tains the following Higgs scalars:

χL =

(
χ+

L

χ0
L

)
, χR =

(
χ+

R

χ0
R

)
, (2.1)

with transformation properties under SU(2)L×SU(2)R×
U(1)Y :

(1/2, 0, 1)χL , (0, 1/2, 1)χR . (2.2)

The first stage of symmetry breaking occurs when χR ac-
quires its vacuumexpectationvalue 〈χR〉, leaving a remnant
U(1)Y ′ symmetry coming from the SU(2)R×U(1)Y sector,
whose generator is given by the relation 1

2 Y ′ = T3R + 1
2 Y ,

with Y = B − L. The breakdown to U(1)em is realized,
at the scale vL � vFermi, through the following vacuum
expectation value:

〈χL〉 =

(
0
vL

)
. (2.3)

In order to analyze the couplings of the additional neu-
tral gauge boson we rewrite here the free Lagrangian for
the gauge fields and the piece containing the covariant
derivatives of the scalar fields

L = L0 + LD (2.4)

L0 = − 1
4

FµνFµν − 1
2

Tr
[
Ga

LµνGa,µν
L

]
− 1

2
Tr
[
Ga

RµνGa,µν
R

]
, (2.5)

LD = (DµχL)†DµχL + (DµχR)†DµχR , (2.6)

where

Fµν = ∂µBν − ∂νBµ , (2.7)

Ga,µν
L,R = ∂µW a,ν

L,R − ∂νW a,µ
L,R + igL,R

[
W a,µ

L,R, W a,ν
L,R

]
, (2.8)

and
DµχL,R = ∂µχL,R + igL,RWL,RχL,R . (2.9)

The gauge coupling constants related to the gauge group
SU(2)L⊗SU(2)R⊗U(1)B−L, are respectively gL, gR and
g. When substituting the vacuum expectation values for
the scalar fields in LD, one obtains the gauge bosons mass
terms. Explicitly, the mass matrix for the neutral sector in
the basis (WL, WR, B) is

M =
1
4




g2
Lv2

L 0 −ggLv2
L

0 g2
Rv2

R −ggRv2
R

−ggLv2
L −ggRv2

R g2(v2
L + v2

R)


 . (2.10)

The mass matrix M is diagonalized by an orthogonal trans-
formation R which connects the weak fields (Wµ

L , Wµ
R , Bµ)

to the physical ones (Zµ, Z ′µ, Aµ). By direct calculation
from the neutral mass matrix we can obtain an analytic
expression for R in powers of w = vL/vR,

R = (2.11)



cos θW

− sin θW sin β − w2 cos2 β sin3 β

sin θW

− sin θW cos β +
w2 cos β sin4 β

sin θW

w2 cos β sin2 β sin θW

cos β − w2 cos β sin4 β sin β cos θW

− sin β − w2 cos2 β sin3 β cos β cos θW




.

In (2.11), the following relations were employed:

sin2 θW =
g2
Rg2

Λ
, sin2 β =

g2

g2
R + g2 ,

sin α =
g2Λ1/2

(g2
R + g2)2

w2 + O(w3) , (2.12)

with Λ = (g2
Lg2

R + g2g2
L + g2g2

R).
In the limit w = 0, the left and right sectors are de-

coupled and one recovers the standard model gauge boson
couplings. The triple and quartic self-interactions terms
contained in the kinetic terms Tr[GµνGµν ]L,R are explic-
itly

Tr
[
Ga,µνGa

µν

]
= ∂µW a,ν∂µW a

ν − ∂νW a,µ∂µW a
ν

+2igL,Rfabc∂µW a,νW b
µW c

ν (2.13)

+
g2

2
fabcfalmW b

µW c
ν W l,µWm,ν ,

where fabc is the totally antisymmetric tensor. Using the
mixing matrix R and taking the physical charged fields
as being

W±µ
L,R =

1√
2

(W 1µ
L,R ±W 2µ

L,R) , (2.14)

the Feynman rules for the W+
L,RW−

L,RXj triple vertices are
readily found:

Γ abc
λ1λ2λ3

(k1, k2, k3)

= giRijf
abc[(k1 − k2)λ3gλ1λ2 + (k2 − k3)λ1gλ2λ3

+(k3 − k1)λ2gλ3λ1 ] , (2.15)

with i = 1, 2, g1 ≡ gL, g2 ≡ gR and the sub-index j takes
the values 1, 2 or 3 whenever Xj is identified as Z, Z ′ or
γ respectively. In Table 1 we summarize the results for the
couplings factors giRij using the standard parametrization
of R in terms of sin θW(sθW), sinβ(sβ) and sinα(sα), which
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Table 1. Triple couplings

Couplings

Z Z′ γ

W+
L W −

L gLcθWcα gLcθWsα gLsθW

W+
R W −

R −gR(sαcβ − cαsθWsβ) gR(cβcα − sαsθWsβ) gRsβcθW

Table 2. Quartic couplings

Couplings

γZ′ Z′Z Z′Z′

W+
L W −

L g2
LsθWcθWsα g2

Lc2
θW

sαcα g2
Lc2

θW
s2

α

W+
R W −

R g2
RsβcθW g2

R(sαcβ + cβsθWsβ)(sαsθWsβ − cβcα) g2
R(cβcα − sαsθWsβ)2

correspond to the mixing angles between Z–A, Z ′–A and
Z ′–Z respectively.

Similarly, for the quartic self-interaction terma straight-
forward calculation for the W+

i W−
i XjXk vertex yields the

Feynman rules:

Γ abcd
λ1λ2λ3λ4

= g2
i RijRik[fabefcde(gλ1λ3gλ2λ4 − gλ2λ3gλ1gλ4)

+facef bde(gλ1λ2gλ3λ4 − gλ3λ2gλ1λ4)

+fadefcbe(gλ1λ3gλ2λ4 − gλ4λ3gλ1λ2) . (2.16)

The resulting couplings are summarized in Table 2.
In the high energy limit where the symmetry breaking

scales vR and vL can be neglected, the theory is invariant
under the parity operation P, and we must have gL = gR.
At lower energies the running couplings lead to different
values of gL and gR. However, in the region of the Z ′ that we
are considering this is a small effect and we will consider
gL = gR. This simplification reduces the number of the
arbitrary gauge coupling to two.

One of the most interesting consequences of the minimal
left–right symmetric model is that there is only one new
scale parameter in themodel, vR, besides the usual standard
model inputs.

3 Models for the fermion representation

We present in this paper two possibilities for the funda-
mental fermionic representation.

3.1 Mirror left–right model

In this model [8] (from now on called MLRM) we have
new heavy fermions with opposite chirality relative to the
present known fermions. The parity operation transforms
the SU(2)L

P←→ SU(2)R sectors, including the vector
gauge bosons. For the other leptonic and quark families
a similar structure is proposed. The charge generator is
given by Q = T3L + T3R + Y/2.

Table 3. Quantum numbers for left and right states in mirror
left–right model

States T3L T3R Y/2 Q

νL 1/2 0 −1/2 0

eL −1/2 0 −1/2 −1

NR 0 1/2 −1/2 0

ER 0 −1/2 −1/2 −1

uL 1/2 0 1/6 2/3

dL −1/2 0 1/6 −1/3

UR 0 1/2 1/6 2/3

DR 0 −1/2 1/6 −1/3

The fundamental representation for leptons in this
model is


L =
(

ν

e

)
L

, νR , eR , LR =
(

N

E

)
R

, NL , EL .

(3.1)
For quarks we have

uL =
(

u

d

)
L

, uR , dR , UR =
(

U

D

)
R

, UL , DL .

(3.2)
The quantum numbers for this model are shown in

Table 3 with the charge operator given by

Q = I3L + I3R +
B − L

2
.

Introducing the notation

sin2 θW ≡ g2
Rg′2

g2
Rg2

L + g2
Rg′2 + g2

Lg′2 ,

sin2 β ≡ g′2

g2
R + g′2 , (3.3)

the condition gL = gR implies

sin β = tan θW , (3.4)
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Table 4. Couplings between the neutral gauge bosons Z and
Z′ and the ordinary fermions in mirror left–right model (first
family)

Couplings gV gA

Zνν 1 1

Zee −1 + 4 sin θW 1

Zuu 3 − 8 sin θW −3

Zdd −3 + 4 sin θW 3

Couplings g′
V g′

A

Z′νν 1 (cos2 θW − sin2 θW)

Z′ee −1 + sin2 θW (cos2 θW − sin2 θW)

Z′uu 3 − 8 sin2 θW +3(cos2 θW − sin2 θW)

Z′dd −3 + 4 sin2 θW −3(cos2 θW − sin2 θW)

and the unification condition for the electromagnetic in-
teraction is the same as in the standard model,

e = gL sin θW . (3.5)

We are interested in interactions between the extra
neutral gauge boson Z ′ and the ordinary fermions, that
are described by the Lagrangian for the neutral currents
with Z and Z ′ boson contributions,

LNC =
e

4 sin θW cos θW
(3.6)

×Ψ̄iγ
µ

{
T3L

(1− γ5)
2

−Q sin2 θW

}
ΨiZµ

+
e tan θW tanβ

4 sin θW
Ψ̄iγ

µ

{
T3L

(1− γ5)
2

−Q

}
ΨiZ

′
µ .

The couplings between the neutral gauge bosons and
the matter fields are explicitly shown in Table 4.

In this model the charged fermion masses can also be
understood as having its origin in a see-saw mechanism.
This new result comes from the choice of the fundamental
fermionic representation and from new Higgs singlets that
do not contribute to the gauge boson masses [8].

3.2 Symmetric left–right model

In this model (from now on called SLRM) a new right-
handed fermionic sector appears as a doublet under the
SU(2)R transformation [1].

The fundamental representation for leptons and quarks
of the gauge group SU(2)L ⊗ SU(2)R ⊗ U(1)B−L is

ΨL =
(

ν

e

)
L

, ΨR =
(

Ne

e

)
R

, (3.7)

qL =
(

u

d

)
L

, qR =
(

u

d

)
R

, (3.8)

and the quantum numbers are given in Table 5.

Table 5. Quantum numbers for left and right states in the
symmetric left–right model

States I3L I3R (B − L)/2 Q

νL 1/2 0 1/2 0

eL −1/2 0 1/2 −1

NeR 0 1/2 1/2 0

eR 0 −1/2 1/2 −1

uL 1/2 0 1/6 2/3

dL −1/2 0 1/6 −1/3

uR 0 1/2 1/6 2/3

dR 0 −1/2 1/6 −1/3

Table 6. Couplings between the neutral gauge bosons Z and
Z′ and the ordinary fermions in symmetric left–right model
(first family)

Couplings gV gA

Zνν 1 1

Zee −1 + 4 sin θW 1

Zuu 3 − 8 sin θW −3

Zdd −3 + 4 sin θW 3

Couplings g′
V g′

A

Z′νν 1 −1

Z′ee 3 1

Z′uu −5 −3

Z′dd 1 3

We can rewrite the gauge couplings in terms of a mixing
angle as

g =
e

sin θW
(3.9)

and
g′ =

e√
cos 2θW

. (3.10)

The neutral current Lagrangian that describes the in-
teractions between the ordinary matter with Z and Z ′
boson contributions is

LNC =
e

4 sin θW cos θW
(3.11)

×Ψ̄iγ
µ
{
(1− γ5)I3L −Q sin2 θW

}
ΨiZµ

+
e

sin θW cos θW

1√
cos 2θW

×Ψ̄iγ
µ

{
sin2 θW

(
I3L

(1− γ5)
2

−Q sin2 θW

)

+ cos2 θW

(
I3R

(1 + γ5)
2

−Q sin2 θW

)}
ΨiZ

′
µ ,

and the resulting couplings are shown in Table 6.
In Table 7 we show the most important difference be-

tween the two models: the coupling of the new Z ′ and
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Table 7. Couplings g′
V and g′

A of a new Z′ in mirror left–right
model (MLRM) and symmetric left–right model (SLRM) and
the ratio g′

V /g′
A in both models. (sin2 θW = 0.23)

Couplings

Models g′
V g′

A g′
V /g′

A

SLRM −0.08 −0.54 0.15

MLRM 3 1 3

ordinary charged leptons. The MLRM coupling is domi-
nantly axial, whereas the SLRM is dominantly vectorial.
This property will give different asymmetries, as will be
shown in the next section.

The Particle Data Group, in its 2002 edition [9], summa-
rizes the present data from low energy lepton interactions,
lepton–hadron collisions and the high precision data from
LEP and SLAC. They also present the experimental aver-
ages for the gV and gA couplings for charged and neutral
leptons. The most stringent bounds come from the effec-
tive coupling of the Z to the electron neutrino, gνe

exp =
0.528± 0.085 and Γ inv

exp(Z) = 499.0± 1.5 MeV, to be com-
pared with the standard model predictions gSM = 0.5042
and Γ inv

SM(Z) = 501.65± 0.15 MeV. For the muon neutrino
coupling with the Z boson, the Particle Data Group quotes
gνµ
exp = 0.502±0.017. We have performed a fit to these data,

using the standard model predictions, and we find that de-
viations from the standard model must be bounded at 95%
confidence level by

(ω2 sin4 β) < 10−4 . (3.12)

This bound is consistent with the present experimental
constraint on the ρ parameter. With the value for sinβ
given in (3.3), we have the bound

vR > 30 vL . (3.13)

For the new Z ′ mass we have

MZ′ > 800 GeV , (3.14)

and the Z ′ mass is the only new unknown parameter.
This value is a little above the present experimental

bounds on new gauge bosons searches done by the CDF
and DZero collaborations [10] at Fermilab.

The Z ′ total width in MLRM is ΓZ′ � 6.80×10−3MZ′

and ΓZ′ � 2.15 × 10−2MZ′ in SLRM, three times larger
than the previous model. The new Z ′ decays can have
contributions from many channels. For the channels Z ′ −→

ff̄ , with “f” any of the presently known fermions, we
can compute all the decay ratios using Tables 4 and 6. A
second group of decay channels comes from the triple and
quartic vertices from Tables 1 and 2. All these channels give
small contributions relative to the fermionic channels. The
same suppression is present in the scalar and neutral gauge
bosons couplings as shown in Table 8. For example, the
decayZ ′ −→ Z+χL+χL withMχL = 150 GeVhas a partial
width ΓZ′ = 2.46 × 10−3 GeV for MZ′ = 800 GeV and
ΓZ′ = 2.67×10−1 GeV for MZ′ = 3 TeV. In mirror models
we can have new heavy fermions coupled to the new neutral
current. These new exotic channels can have important
phase suppression factors depending on their masses. Since
these contributions depend onunknownparameters,wewill
not take them into account.

4 Results

In this section we present the total cross sections, angular
distributions and asymmetries for muon pair production
in e+e− annihilation, comparing the signals from MLRM
and SLRM with the standard model (SM) background. A
Monte Carlo program was written to generate events at
a fixed CM energy

√
s. To be more specific, three energy

values are considered in this paper, 500 GeV, 1 TeV and
3 TeV, which are appropriate for the TESLA at DESY,
NLC at SLAC [12] and CLIC at CERN [11] respectively.
In these high energy colliders, the incoming electrons and
positrons radiate photons, giving rise to the so-called initial
state radiation (ISR), which leads to an effective energy
of the annihilation process smaller than the nominal CM
energy of the collidingbeams. In order to correct for ISR, the
actual cross sections are written as convolutions of the Born
cross sections for muon pair production, with structure
functions for the incoming electron and positron beams. For
these structure functions we follow the prescription of [13].
The simulated events were selected by a cut θacol < 10◦
on the acollinearity angle of the final state muons, which
are no longer produced back-to-back on account of ISR.
Both muons were also required to be detected within the
polar angle range | cos θ| < 0.995, where θ is the angle of
either of the muons with respect to the direction of the
electron beam. For the numerical calculations, we used
MZ = 91.1874 GeV, ΓZ = 2.496 GeV, α(M2

Z) = 1/128.5
and sin2 θW = 0.23105. Fermion masses were set to zero. All
the calculations involving unpolarized beams were cross-
checked with CompHEP [14].

In Fig. 1 we show the total cross section without ISR
for the process e+ + e− −→ µ+ + µ−, as a function of the

Table 8. Couplings between scalar and gauge bosons

Couplings

Z′2 Z′Z Z′A

χ02
R (gR22 + g′R32)2 2g2R21R22 + 2g′2R31R32 2g2R22R32 + 2g′2R32R33

−2g′g(R22R31 + R32R21) −2gg′(R22R33 + R32R33)

χ02
L 0 −2gg′R11R32 −2gg′R13R32
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Fig. 1. Total cross sections for muon pair production e+e− −→
µ+µ− versus

√
s for standard model (SM), mirror left–right

model (MLRM) and symmetric left–right model (SLRM)

250 350 450 550 650 750

MZ’ (GeV)

-1.0

-0.5

0.0

0.5

1.0

AFB

√s= 500 GeV

MLRM
SLRM
MLRM (ISR)
SLRM (ISR)
SM

0.47

Fig. 2. The forward–backward asymmetry in the process
e+e− −→ µ+µ− for SM, SLRM and MLRM versus MZ′ for
TESLA (

√
s = 500 GeV)

CM energy, for SLRM and MLRM. The SM cross section
is also shown for comparison. Two different values of MZ′

are considered, namely MZ′ = 800 GeV and MZ′ = 2 TeV.
The expected resonance peaks associated with these MZ′

values are clearly shown in the picture, as well as the Z0 SM
peak. It is interesting to note that the peaks of the MLRM
cross sections are greater than those of the SLRM cross sec-
tions, because the Z ′ total width is smaller in the MLRM.
This property can be used to distinguish the two mod-
els. The presence of the new neutral boson Z ′ is essential
to preserve tree-level unitarity in both extended models,
leading to cross sections that fall to zero for asymptotically
high energies.

Next we look at the dependence of the forward–back-
ward asymmetry AFB on MZ′ . Figures 2, 3 and 4 show
the corresponding curves for the collider energies 500 GeV,
1 TeV and 3 TeV respectively, and the points indicate how
the ISR affects the asymmetry. In each case the error bars
represent the statistical errors for an integrated luminosity
of 500 fb−1. The forward–backward asymmetry is quite

600 800 1000 1200 1400 1600 1800
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MLRM (ISR)
SLRM (ISR)
SM

0.47

Fig. 3. The forward–backward asymmetry in the process
e+e− −→ µ+µ− for SM, SLRM and MLRM versus MZ′ for
NLC (

√
s = 1 TeV)

2400 2900 3400 3900 4400
MZ’ (GeV)
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√s=  3 TeV 
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MLRM (ISR)
SLRM (ISR)
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0.47

Fig. 4. The forward–backward asymmetry in the process
e+e− −→ µ+µ− for SM, SLRM and MLRM versus MZ′ for
CLIC (

√
s = 3 TeV)

sensitive to MZ′ and can also be used to distinguish MLRM
from SLRM.

Beam polarization is expected to play a very impor-
tant role at the future linear collider facilities. With lon-
gitudinally polarized electron and positron beams one can
effectively enhance the signals of interest and suppress in-
convenient backgrounds, and thus increase the sensitiv-
ity of spin-dependent observables to deviations from the
SM predictions. Experts usually believe that it should not
be too difficult to produce electron beams whose degrees
of polarization exceed 90%. As a matter of fact, electron
beam polarization routinely reaches values around 80% at
SLAC. Several schemes have been devised to produce po-
larized positron beams in a linear collider. Although these
techniques remain untested, simulations suggest that it is
feasible to reach a degree of positron polarization of 60%.
In all the calculations considered in the following, the de-
grees of polarization of the electron and positron beams
were taken to be P− = −90% and P+ = 60% respectively.
To illustrate the importance of beam polarization, it suf-
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Fig. 5. The asymmetry A(P−, P+) in the process e+e− −→
µ+µ− for SM, SLRM and MLRM versus MZ′ for TESLA
(
√

s = 500 GeV). The longitudinal polarization of the electron
andpositron beamswere taken to be −90%and 60% respectively

fices to say that for
√

s = 500 GeV, the polarized cross
section σ(P−, P+) = σ(−0.9, 0.6) is essentially double the
unpolarized cross section σ(0, 0) . Here we define an asym-
metry A(P−, P+), in terms of the degrees of polarization
P± of the electron and positron beams, and the helicity
cross sections:

A(P−, P+) (4.1)

=
(1− P−)(1 + P+)σ−+ − (1 + P−)(1− P+)σ+−
(1− P−)(1 + P+)σ−+ + (1 + P−)(1− P+)σ+−

,

where the first (second) subscript in σ±∓ refers to the
electron (positron) helicity. The parity violating left–right
asymmetry ALR = (σL − σR)/(σL + σR) can be easily
obtained from A(P−, P+) through the relation

ALR =
A(P−, P+)− Peff

1− Peff · A(P−, P+)
, (4.2)

with the effective polarization defined as Peff = (P+ −
P−)/(1− P−P+).

Figures 5, 6 and 7 display the behavior of A(−0.9, 0.6)
as a function of MZ′ , for the three energies under study.
The differences between MLRM and SLRM asymmetries
are considerable, the more so in the resonance region, the
deviations from the SM value being larger for the MLRM
over the whole MZ′ range. As expected, the asymmetries in
both models tend to the standard model value for MZ′ 	√

s. If we take into account the lower bound in (3.14),
MZ′ > 800 GeV, it seems unlikely that A(P−, P+) can be
used as a measure of the deviations of these models from the
SMat thefirst stage ofTESLA, inwhich

√
s ≤ 500 GeV.For

a possible TESLA extension, where the CM energy could
reach 800 GeV, detection of these deviations in A(P−, P+)
cannot be excluded if MZ′ is close to the lower bound. For
higher values of

√
s, as those of NLC (stage 2) and CLIC,

A(P−, P+) is sensitive to larger values of the Z ′ boson mass,
as long as we exclude the asymptotic region MZ′ 	 √s.

In order to determine the discovery limits for a Z ′ bo-
son via muon pair production, we compared the angular
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Fig. 6. The asymmetry A(P−, P+) in the process e+e− −→
µ+µ− for SM, SLRM and MLRM versus MZ′ for NLC
(
√

s = 1 TeV). The longitudinal polarization of the electron
and positron beams were taken to be −90% and 60% respec-
tively
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Fig. 7. The asymmetry A(P−, P+) in the process e+e− −→
µ+µ− for SM, SLRM and MLRM versus MZ′ for CLIC
(
√

s = 3 TeV). The longitudinal polarization of the electron
and positron beams were taken to be −90% and 60% respec-
tively

distribution dσ/d(cos θ) predicted by each of the left–right
modelswith the corresponding SMexpectation. Plots of the
angular distribution are shown in Fig. 8 for the extended
models and SM, considering Mz′ = 800 GeV, P− = −90%
and P+ = 60% for

√
s = 500 GeV. Assuming that the

experimental data in muon pair production will be well
described by the standard model predictions, we defined a
one-parameter χ2 estimator

χ2(ξ) =
nb∑
i=1

(
NSM

i −NLR
i

∆NSM
i

)2

, (4.3)

where NSM
i is the number of SM events collected in the ith

bin, NLR
i is the number of events in the ith bin as predicted
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Fig. 8. Angular distributions of the µ− in the process e+e− −→
µ+µ− for SM, SLRM and MLRM considering MZ′ = 800 GeV,
P− = −90% and P+ = 60% for TESLA (

√
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√

s for
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by the extended model, and

∆NSM
i =

√(√
NSM

i

)2

+ (NSM
i ε)2 (4.4)

the corresponding total error, which combines in quadra-
ture the Poisson-distributed statistical error with the sys-
tematic error. We took ε = 5% to correct for those sources
of systematic error not explicitly accounted for in our cal-
culation, such as the luminosity uncertainty, beam energy
spread and the uncertainty in the muon detection efficiency.
The angular range | cos θ| < 0.995 was divided into nb = 10
equal-width bins, and the free parameter ξ = 1/MZ′ was
varied to determine the χ2(ξ) distribution. The 95% con-
fidence level bound corresponds to an increase of the χ2

by 3.84 with respect to the minimum χ2
min of the distribu-

tion. Figure 9 represents the 95% confidence limits on the
(
√

s, MZ′) plane for TESLA, NLC and CLIC.

5 Conclusions

We have presented an analysis of the effects of a new neu-
tral gauge boson Z ′ in muon pair production, at the next
generation of linear colliders, in the context of two extended
electroweak models, the mirror left–right model (MLRM)
and the symmetric left–right model (SLRM). A number
of observables that are sensitive to the presence of such
a gauge boson were studied in detail. These observables
were found to be useful to distinguish the two models,
should new physics associated with the Z ′ turn up at high
mass scales. Our simulations indicate that longitudinally
polarized electron and positron beams can significantly in-
crease event rates and the sensitivity of these observables
to the presence of a new neutral gauge boson. Starting
from the angular distributions of the final µ−, 95% C.L.
discovery limits on the Z ′ mass were derived for the new
linear colliders, in terms of the available CM energies.
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